
JumpCloud RADIUS Certificate based Auth 3rd Party Tools for
BYO Certificates

Background
JumpCloud has integrated the use of digital X.509 certificates for authentication, known as the
most secure and most frictionless to the user. The JumpCloud RADIUS service is now capable
of certificate based authentication to control access network resources (RADIUS-CBA).
The first release of the RADIUS-CBA allows customers to import certificates (bring your own
certificate - BYOC) from any source compliant with X.509 standard. This capability allows
customers to keep the existing certificate infrastructure in place for RADIUS network access
purposes.
In order to authenticate users with certificates in the JumpCloud RADIUS service 3 fundamental
functions are needed:

1. Certificate Management
Certificate management involves provisioning (minting) certificates and managing their
lifecycle. The provisioning function involves creating (minting) a certificate but also
defining the chain of trust (origin) of the certificate. RADIUS-CBA supports certificates
from a Certificate Authority (CA) or a self signed certificate. The life cycle management
allows an IT administrator to “revoke” and “reissue” certificates as required.

2. Certificate Delivery
A certificate must be physically deployed into a secure area of every target device to be
used for authentication. The methodology and process to deploy a certificate varies
depending on the Operating System. Since RADIUS-CBA supports Windows, MacOS,
iOS, Linux, the delivery tools must be able to support at least those device types or at
least those needed by the customer.

3. RADIUS Certificate based Authentication
This fundamental function is provided by the new JumpCloud RADIUS-CBA

This capability also means IT administrators must manage the following 3 basic certificate
lifecycle functions outside of JumpCloud:

● Certificate Provisioning
The provisioning function involves creating (minting) a certificate but also defining the
chain of trust (origin) of the certificate. RADIUS-CBA supports certificates from a
Certificate Authority (CA) or a self signed certificate.

● Certificate change of status
A certificate can have a valid, expired or revoked status. In order to enforce the
mentioned statutes,  an IT administrator must be able to “revoke” and “reissue” every
managed certificate.

● Certificate Delivery to devices
A certificate must be physically deployed into a secure area of every target device to be
used for authentication. The methodology and process to deploy a certificate varies



depending on the Operating System. Since RADIUS-CBA supports Windows, MacOS,
iOS, Linux, the delivery tools must be able to support at least those device types or at
least those needed by the customer.

Business Case
The objective of this document is to facilitate customers new to certificate authentication to
quickly and effectively find all the tools necessary to leverage certificate based authentication.

Problem Statement
The RADIUS-CBA service requires the first two fundamental functions (Certificate Management
and Certificate Delivery) to be done apriori and outside of JumpCloud. Therefore, the IT
administrator must use one of many tools in the marketplace to perform those actions.
The problem is further compounded for customers new to certificate authentication who must
research and test the required solutions.

Proposed Solution
The proposed solution provides a list of some 3rd party tools and providers (commercial and
open source) that can perform the required functions. JumpCloud has researched and identified
some of the best known tools and vendors available in the industry capable of performing the
required functions listed below in no particular order:

● Certificate provisioning tools
Certificates need to have an origin or root certificate where the trust begins (Certificate
Trust Chain). A certificate and corresponding Certificate Trust Chain can be generated
by either a Certificate Authority (CA) or Self signed.

○ CA based certificates
■ Google Certificate Authority Services

(https://cloud.google.com/certificate-authority-service )
■ Amazon Certificate Manager (https://aws.amazon.com/private-ca/)
■ Digicert (https://www.digicert.com/ )
■ Globalsign (https://www.globalsign.com/en )
■ AppviewX (https://www.appviewx.com/products/cert/)
■ Keyfactor (https://www.keyfactor.com/ )
■ Venafi (https://www.venafi.com/platform/zero-touch-pki)

○ Self signed based certificates
■ OpenSSL (www.openssl.org/ )
■ GnuTLS (www.gnutls.org/manual/html_node/certtool-Invocation.html)

● Certificate lifecycle management
○ AppviewX
○ Keyfactor
○ Venafi
○ Globalsign

● Certificate delivery to devices
○ Jamf (https://www.jamf.com/ )

https://cloud.google.com/certificate-authority-service
https://www.digicert.com/
https://www.globalsign.com/en
https://www.appviewx.com/products/cert/
https://www.keyfactor.com/
https://www.venafi.com/platform/zero-touch-pki
http://www.openssl.org/
https://www.gnutls.org/manual/html_node/certtool-Invocation.html
https://www.jamf.com/


■ Support MacOS, iOS
■ Integration with AppviewX, Venafi, and others.
■ Enables the use of variables to embed and customize certificate fields

(See https://jamf.it/macprofile and https://jamf.it/iosprofile for detailed
information)

■ Third party certificate delivery is supported by the Jamf SCEP Proxy
(Jamf 3rd Party Certificate delivery via SCEP Proxy)

○ Microsoft Intune
(https://www.microsoft.com/en-us/security/business/endpoint-management
/microsoft-intune?rtc=1)

■ Supports Windows, Linux, MacOS, iOS, Android
■ Integration with Globalsign, AppviewX, Keyfactor, and others.

○ AirWatch (http://www.air-watch.com/ )
■ Supports iOS and Android
■ Integration with Globalsign, AppviewX,Venafi, Keyfactor and others

○ MobileIron (https://www.ivanti.com/company/history/mobileiron )
■ Supports iOS, Android, macOS and Windows
■ Integration with Globalsign, AppviewX,Venafi, Keyfactor and others

○ Soti (https://www.soti.net/ )
■ Supports iOS, Android, macOS and Windows
■ Integration with AppviewX

● Tools that perform all functions under a single platform
Unfortunately, there is no provider that can perform all functions under the same
platform; however, organizations like Globalsign, AppviewX and Keyfactor have
integrated certificate delivery as part of their certificate management systems.

Application of Solution
With the availability of the above tools and the RADIUS-CBA interface, enable IT Administrators
to quickly enable certificate based authentication for RADIUS. The sequence of steps to
configure RADIUS-CBA is as follows:

1. Create a Certificate Trust Chain
2. Create certificates compatible with RADIUS-CBA (See Appendix - Certificates

compatible with RADIUS-CBA)
3. Deploy certificates to target devices

The delivery of certificates varies depending on the target device (OS platform, OS
Version, etc). However, the same certificate applies to all target devices.  (See Appendix
-  Manual Certificate deployment)

4. Import the Certificate Trust Chain into RADIUS-CBA
5. Configure RADIUS access point in RADIUS-CBA
6. Configure authentication factors (MFA) including Certificate Authentication (See

Appendix - Admin User Interface)
7. Assign users to the RADIUS access point via User Groups

https://jamf.it/macprofile
https://jamf.it/iosprofile
https://docs.jamf.com/technical-papers/jamf-pro/scep-proxy/10.0.0/Enabling_as_SCEP_Proxy_for_Enrollment.html
https://www.microsoft.com/en-us/security/business/endpoint-management/microsoft-intune?rtc=1
https://www.microsoft.com/en-us/security/business/endpoint-management/microsoft-intune?rtc=1
http://www.air-watch.com/
https://www.ivanti.com/company/history/mobileiron
https://www.soti.net/


After the above configuration is completed, end users can now authenticate to RADIUS-CBA by
using a device with provisioned certificates.

Finally, the RADIUS-CBA service will obtain the certificate content from the device, verify the
standing of the user against the JC directory and perform access control to the desired RADIUS
network resource.

Future Direction
Although JumpCloud plans to provide each of the above tools as part of the JumpCloud
platform in future releases, many existing JumpCloud customers will continue using their
existing certificate lifecycle management tools.

Conclusion
The combination of any of the above tools and the RADIUS-CBA capability enables customers
new to certificate based authentication to effectively leverage the RADIUS-CBA service quickly.

IT Administrators to quickly enable certificate based authentication for RADIUS.
● Enabled customer new to certificate based auth to effectively leverage the RADIUS-CBA

service
● Provide options based on experience, cost and missing functions



Appendices

Appendix – Certificates compatible with RADIUS-CBA

RADIUS-CBA supports only certificates that contain a user identifier within the
certificate (User Certificates) located on the target client device. The User
Certificates can be of various types.

User Certificate types supported by RADIUS-CBA
There are 3 types of certificates RADIUS-CBA supports based on the location
(certificate field) where the user identifier resides within the certificate as
illustrated below.

a. Client cert with JumpCloud user email in the subject alternative name



○
b. Client cert with JumpCloud user email in the subject distinguished name



○
c. Client cert with JumpCloud username in the common name





Self Signed Certificate Manual Creation process using OpenSSL
The above sample certificates were created using the OpenSSL commands located on Sample
SSLcommands or listed below:

a. Create self signed root certificate
○ openssl req -x509 -newkey rsa:2048 -days 365 -keyout selfsigned-ca-key.pem

-out selfsigned-ca-cert.pem -subj "/C=US/ST=Colorado/L=Boulder/O=JumpCloud
CA/OU=ITDept/CN=Test Intermediate 1"

b. Create certificate request
○ openssl req -nodes -new -key selfsigned-ca-key.pem -out cert-req.csr -subj

"/C=US/ST=Virginia/L=Leesburg/O=MyOrg/OU=IT Department/CN=MyOrg.com"
c. Create certificate for specific user email in the subject distinguished name

○ openssl genrsa -out basicDemo-subject-email-client-signed.key 2048
○ openssl req -new -key basicDemo-subject-email-client-signed.key -out

emailDN.csr -config extensions-emailDN.cnf -subj
"/C=US/ST=Virginia/L=Leesburg/O=MyOrg/OU=Sales-Radius-Access/CN=/email
Address=roger_q@yahoo.com"

○ openssl x509 -req -in emailDN.csr -CA selfsigned-ca-cert.pem -CAkey
selfsigned-ca-key.pem -days 30 -CAcreateserial -out
basicDemo-subject-email-client-signed-cert.crt -extfile extensions-emailDN.cnf

○ openssl pkcs12 -export -out basicDemo-subject-email-client-signed.pfx -inkey
basicDemo-subject-email-client-signed.key -in
basicDemo-subject-email-client-signed-cert.crt -passout "pass:password"

■ Contents of extensions-emailDN.cnf configuration file:
extensions = v3_req
[req]
distinguished_name = req_distinguished_name
[req_distinguished_name]
[v3_req]
# Useful for debugging with DI events
authorityKeyIdentifier = keyid:issuer
keyUsage = digitalSignature
extendedKeyUsage = clientAuth

d. Create certificate for specific username in the Common Name
○ openssl genrsa -out basicDemo-username-client-signed.key 2048
○ openssl req -new -key basicDemo-username-client-signed.key -out

usernameCN.csr -config extensions-usernameCN.cnf -subj
"/C=US/ST=Virginia/L=Leesburg/O=MyOrg/OU=Sales-Radius-Access/CN=UserR
oger"

○ openssl x509 -req -in usernameCN.csr -CA selfsigned-ca-cert.pem -CAkey
selfsigned-ca-key.pem -days 30 -CAcreateserial -out
basicDemo-username-client-signed-cert.crt -extfile extensions-usernameCN.cnf

https://drive.google.com/drive/folders/161e3YGmApqG9NltJkGdpMrdw9sCR-PuH?usp=sharing
https://drive.google.com/drive/folders/161e3YGmApqG9NltJkGdpMrdw9sCR-PuH?usp=sharing


○ openssl pkcs12 -export -out basicDemo-username-client-signed.pfx -inkey
basicDemo-username-client-signed.key -in
basicDemo-username-client-signed-cert.crt -passout "pass:password"

■ Contents of extensions-usernameCN.cnf configuration file:
extensions = v3_req
[req]
distinguished_name = req_distinguished_name
[req_distinguished_name]
[v3_req]
# Useful for debugging with DI events
authorityKeyIdentifier = keyid:issuer
keyUsage = digitalSignature
extendedKeyUsage = clientAuth

e. Create certificate for specific user email in the Subject Alternative Name
○ openssl x509 -req -in emailSAN.csr -CA selfsigned-ca-cert.pem -CAkey

selfsigned-ca-key.pem -days 30 -CAcreateserial -out
basicDemo-SAN-client-signed-cert.crt -extfile extensions-emailSAN.cnf

○ openssl pkcs12 -export -out basicDemo-SAN-client-signed.pfx -inkey
basicDemo-SAN-client-signed.key -in basicDemo-SAN-client-signed-cert.crt
-passout "pass:password"

■ Contents of extensions-emailSAN.cnf configuration file:
extensions = v3_req
[req]
distinguished_name = req_distinguished_name
[req_distinguished_name]
[v3_req]
# Useful for debugging with DI events
authorityKeyIdentifier = keyid:issuer
keyUsage = digitalSignature
extendedKeyUsage = clientAuth
#For Client cert with email in the subject alternative name
subjectAltName = email:roger_q@yahoo.com



Appendix - Admin User Interface

Appendix – Manual Certificate deployment

The RADIUS-CBA User Certificates must be installed on the user or local store of the target
devices.
An example of a manual deployment of RADIUS CBA certificates in Windows 10 is
accomplished by the indicated manual steps and scripts below.

● Microsoft Windows
a. To install double click on PFX file (ex. basicDemo-SAN-client-signed.pfx ) and

import on “Current User | Personal Store”
b. The RADIUS CBA certificate is assumed to have either the Username or email

embedded in the certificate as indicated on the Appendix Certificate compatible
with RADIUS-CBA

c. Script to manually installs the RADIUS CBA certificate in the CurrentUser store
■ certutil -user -p pass: -importPFX basicDemo-SAN-client-signed.pfx



Appendix – Authors

● Author: Roger Quint

Appendix – References

● RADIUS CBA - Feature Bulletin Blog

Appendix – Disclaimer
● Disclaimer - The technologies and vendors provided in this document are only a portion

of the providers available in the marketplace

https://docs.google.com/document/d/1vi0M_pHh3odCwPXHdU9NE78bMFR10o6y3hSGvdRGqPw/edit?usp=sharing

